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Abstract—We extend the proximal mapping property of soft
thresholding to a general class of shrinkage mappings. We give an
example and demonstrate improved reconstruction performance.

I. INTRODUCTION

A key ingredient in many algorithms for `1 minimization is
that the `1 norm has an explicit, simple proximal mapping:

arg min
w

‖w‖1 + 1
2λ‖w−x‖

2
2 = max{|x|−λ, 0} sign(x). (1)

However, there is much research showing that better results
for sparse signal recovery can be obtained using nonconvex
penalty functions, such as the `p quasinorm for p ∈ (0, 1)—
which does not have an explicit proximal mapping for general
p. The `0 penalty does have an explicit proximal mapping,
though it is discontinuous, and difficult to use numerically.

To bridge the gap between `p quasinorms and proximal
mappings, in [1] a new family of shrinkage operators was
proposed (cf. [2]), generalizing (1):

Sp(x, λ) = max{|x| − λ2−p|x|p−1, 0} sign(x). (2)

It was then shown [3] that for p ∈ (−∞, 1], there is a penalty
function Gp having Sp for a proximal mapping, and that Gp
has many desirable properties, with better numerical results
being obtained with p < 1.

In this paper, we generalize this process, by giving condi-
tions under which a mapping will be the proximal mapping
of a penalty function that will be useful for sparse recovery.
We then give an example of such a mapping, and demonstrate
improved image reconstruction using it.

II. SHRINKAGES AND PENALTY FUNCTIONS

We generalize the notion of a shrinkage mapping:

Theorem 1. Suppose s : [0,∞) → R is continuous, satisfies
x ≤ µ ⇒ s(x) = 0 for some µ ≥ 0, is strictly increasing
on [µ,∞), and s(x) ≤ x. Define S on Rn by S(x)i =
s(|xi|) sign(xi) for each i. Then S is the proximal mapping of
a penalty function G(x) =

∑
i g(xi) where g is even, strictly

increasing and continuous on [0,∞), differentiable on (0,∞),
and nondifferentiable at 0 iff µ > 0. If also x − s(x) is
nonincreasing on [µ,∞), then g is concave on [0,∞) and
G satisfies the triangle inequality.

Proof: Define f(x) =
∫ |x|

0
s(t) dt. Then f is C1 and

even, and since f ′(x) = s(|x|) sign(x), f is convex, and
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strictly convex on (−∞,−µ] and [µ,∞). Define g by g(w) =
(f∗(w)− w2/2)/λ, where f∗ is the Legendre-Fenchel trans-
form of f [4, p. 473]. Then by [4, Prop. 11.3], we have
f ′(x) = arg maxw wx − f∗(w). Then s(x) = f ′(x) =
arg minw g(w) + 1

2λ (w − x)2 by simple manipulations. Thus
S(x) = arg minwG(w)+ 1

2λ‖w−x‖
2
2 by separability, showing

that S is the proximal mapping of G.
The hypotheses on s allow the properties of g to follow as in

[3, Prop. 3], mutatis mutandis, except here we obtain ∂g(0) =
[−µ/λ, µ/λ], and the nondifferentiability claim follows.

III. EXAMPLE

We consider s(x) = x exp(−α/(exp(x−λ)− 1)2) for x >
λ and s(x) = 0 on [0, λ], a smooth approximation of hard
thresholding. We apply Thm. 1 and solve minxG(∇x) subject
to (Fx)|Ω = (Fs)|Ω, where F is the 2D DFT, the sampling
set Ω consists of 6 radial lines, and s is the 256× 256 Shepp-
Logan phantom. We use a split Bregman algorithm as in [1],
[5], but with the new shrinkage substituted (with α = 10−2,
λ = µ = 10−10). The result (Fig. 1) is a perfect reconstruction,
from fewer data than the previous fewest [6].

Fig. 1. Left: sampling mask (courtesy W. Guo [6]), with 2.56% sampling.
Right: reconstruction using the new shrinkage function is exact, from fewer
data than ever before.
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